Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Polymorphism in PbBiOXO₄ compounds (X = V, P, As): Part II—PbBiOPO₄ and PbBiOAsO₄ structures and characterization of related solid solutions

Olfa Labidi, Pascal Roussel, Michel Drache*, Rose-Noëlle Vannier, Jean-Pierre Wignacourt

Unité de Catalyse et de Chimie du Solide-CNRS UMR 8181 (Equipe de Chimie du Solide), ENSCL, USTL, 59655 Villeneuve D'Ascq, Cedex, France

ARTICLE INFO

Article history: Received 18 February 2008 Received in revised form 9 May 2008 Accepted 13 May 2008 Available online 24 May 2008

Keywords: Phase transition Solid solutions Mixed oxides Ionic conductivity

ABSTRACT

Reinvestigation of PbBiOXO₄ (X = V, P, As) thermal behaviour revealed a phase transition for V- and P-compounds, but no transition for the As-compound. As shown by single-crystal X-ray diffraction and high-resolution neutron powder diffraction, α -PbBiOVO₄ transforms to β -PbBiOVO₄ at 550 °C. The two PbBiOPO₄ varieties are isomorph to the vanadate forms, while PbBiOASO₄ adopts the β -type structure whatever the temperature. PbBiP_{1-x}OAs_xO₄ and PbBiV_{1-x}OM_xO₄ (M = As, P, Cr, Mn) solid solutions display both triclinic and monoclinic domains, and the $\alpha \rightarrow \beta$ transition temperature is a function of the substitution rate. The ionic conductivity of these compounds was investigated by impedance spectroscopy. The analysis of free space in the β -PbBiOVO₄ structure allows to propose a one-dimensional oxygen diffusion pathway along [010] when the temperature increases.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In a survey of $nPbO-BiXO_4$ (X = V, P, As) compounds, phases corresponding to n = 1, i.e. PbBiOVO₄, PbBiOPO₄ and PbBiOAsO₄, have been described [1–3].

A reinvestigation of PbBiOXO₄ (X = V, P, As) thermal behaviour (DSC, HTXRD) showed the occurrence of a similar phase transition in the vanadate and phosphate compounds, while no transition was evidenced for the arsenate. At room temperature, PbBiOPO₄ and PbBiOAsO₄ were considered to be isomorph to the PbBiOVO₄ low-temperature form and the high-temperature form, respectively [2,3]. So far their crystal structures have not been described.

In a previous part of this study, a new approach to prepare PbBiOVO₄ single crystals was successfully conducted, allowing an X-ray single-crystal diffraction reinvestigation of the structural transformation. Combined with high-resolution neutron powder diffraction, both room (25 °C) and high (550 °C) temperature forms were structurally characterized. Subsequently this paper is dealing with various cationic substitutions for vanadium and phosphorus in PbBiOXO₄ (X = V, P), which have been tested, and related solid solutions characterized in order to investigate the relationship between the substituent nature and the phase transition temperature.

2. Experimental

2.1. Syntheses

PbBiOVO₄, PbBiOPO₄ and PbBiOAsO₄ powder samples were prepared by solid-state reaction of stoechiometric amounts of the starting reagents PbO (Riedel de Haën, 99%), Bi₂O₃ (Aldrich, 99.9%), V₂O₅ (Aldrich, 99.6%), (NH₄)₂HPO₄ (Sigma, 99%) and As₂O₅ (Janssen, 99.5%). Compositions were weighed, mixed in an agate mortar, fired at temperatures in the 600–800 °C range for a week, with intermediate grindings in order to obtain the desired singlephase material. The phosphate samples were initially preheated at 300 °C to allow (NH₄)₂HPO₄ decomposition.

Substituted powder samples PbBiOP_{1-x}As_xO₄ and PbBiOV_{1-x} X_xO_4 (X = As, P, Cr, Mn) were also synthesized; the two later elements were introduced, respectively, as Cr₂O₃ (Probabo, 99.0%) and MnO₂ (Aldrich, 99%) oxides.

2.2. Characterization methods

The powder and single-crystal samples characterization by X-ray diffraction and their thermal behaviour were conducted as described in the part I of this paper. Their electrical conductivity properties were investigated by impedance spectroscopy, on pellets of 5 mm in diameter and 2–3 mm in thickness, sintered at 850 °C for 48 h. The relative density of the sample was about 90%. Gold electrodes were sputtered on both flat faces and measurements were carried out in air, by impedance spectroscopy in the $1-10^6$ Hz frequency range, using a Schlumberger 1170

^{*} Corresponding author. Fax: +33320436814. E-mail address: michel.drache@ensc-lille.fr (M. Drache).

frequency response analyser from 290 to 800 °C, with a step of 10 °C, with 1 h of stabilization at each temperature before measurement.

3. Results and discussion

3.1. PbBiOPO₄

As already described by Giraud et al. [2], PbBiOPO₄ has been previously identified as isostructural to PbBiOVO₄, but no single crystal of good quality could be obtained. DTA revealed an incongruent melting at 930 °C, with two peaks observed at 880 and 865 °C during the cooling process, leading to a polyphasic mixture containing PbBiOPO₄ back to room temperature. On heating, no thermal effect related to a phase transition was noticed.

As for PbBiOVO₄, a Guinier-Lenné pattern was collected from 20 to 850 °C in 40 h, and stopped just before reaching the melting temperature. It revealed a phase transition, with a drastic modification of the diffraction pattern occurring around 725 °C; the diffraction lines observed at 20 °C were indexed on the basis of the α -PbBiOVO₄ triclinic cell. The lattice parameters evolution is similar to PbBiOVO₄ and confirms the transformation to a β -PbBiOPO₄ form isomorph to the high temperature form of PbBiOVO₄.

In an attempt to prepare good quality single crystals, a powder sample of PbBiOPO₄ was melted at 1000 °C; the cooling process was similar to that used for the vanadate homologous, with a first slow cooling step (1 °C/h) down to 850 °C, and finally the furnace switching off until RT. The obtained crystals were quenched at room temperature. Several phases were found, i.e. $Pb_4Bi(PO_4)_3O$, $Pb_3Bi(PO_4)_3$ and $PbBiOPO_4$ belonging to the $PbO-Bi_2O_3-P_2O_5$ ternary system. However, the selected $PbBiOPO_4$ crystals were not of sufficient quality and structural single-crystal studies failed. Consequently, an X-ray powder Rietveld analysis was conducted. Powder X-ray diffraction data were taken from 5° to 110° in 2θ , with a 0.02° step scan and an integration time of 11 s, on a Bruker D8 Advance diffractometer, Cu $K\alpha$ radiation, equipped with a SolX energy dispersive detector.

The PbBiOPO₄ structure refinement was made with the JANA2006 software [4], based on structural information from the PbBiOVO₄ crystal data: a *pattern matching* allowed fixing a number of parameters (full-width at half-maximum, background, lattice parameters, etc.). The atomic positions from PbBiOVO₄ were then introduced, and refined. Isotropic phosphorus and oxygen thermal factors were given a common value, and the lead and bismuth corresponding anisotropic factors were refined. The Rietveld agreement factors were $R_p = 6.03\%$, $R_{wp} = 7.90\%$, $R_{exp} = 3.31\%$, $R_w(obs) = 4.33\%$ (Fig. 1).

3.2. PbBiOAsO₄

3.2.1. Thermal evolution

At room temperature, PbBiOAsO₄ was first prepared by Giraud et al. [3]. Its diffraction lines could be indexed on the basis of β -PbBiOXO₄ (X = V, P) high temperature form lattice parameters. Consequently, at ambient temperature, PbBiOAsO₄ is monoclinic. DTA, DSC and Guinier-Lenné X-ray thermodiffraction experiments did not show any phase transition. On the other hand, a thermal analysis down to -173 °C was performed using a 141 Setaram DSC and a Panalytical powder diffractometer equipped with a nitrogen cooled Anton Paar TTK450 device. Again, neither accident on the DSC curve, nor any modification of the diffraction lines were observed, thus eliminating any hypothetical low-temperature phase transition from the β form to the α one, at least down to -173 °C.

3.2.2. Single-crystal structural study

PbBiOAsO₄ powder was sampled in a gold tube, heated at 1000 °C for 1 h, then slowly cooled at 1 °C/h until reaching 850 °C, and finally the furnace was disconnected. Single crystals of various shapes were obtained; a crystal sample was selected and the diffraction data collected on a Bruker X8 CCD 4K diffractometer. The refinement results are reported in Table 1.

Even if the crystal was not of high quality, the structure refinement was possible down to a sufficient level to show unambiguously that the structure is identical to the high-temperature PbBiOVO₄ polymorph. The Pb1 coordination

Fig. 1. PbBiOPO₄ X-ray powder diffraction pattern: experimental (red), calculated (black) and difference (blue).

Table 1

Principal characteristics of PbBiOXO₄ crystal structure determinations from X-ray powder (X = P) or single-crystal (X = As) data

Crystallographic data Radiation type Chemical formula Formula weight (g) Temperature (°C) Form Cell setting Space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z Dx (g/cm ³)	X-ray PbBiOPO ₄ 527.1 25 α Triclinic P-1 (N°2) 5.6158(1) 6.8706(1) 7.1189(1) 109.982(1) 109.817(1) 96.897(1) 234.04(1) 2 7.478	X-ray PbBiOAsO ₄ 571.1 25 β Monoclinic C2/m (N°12) a = 13.528(2) b = 5.576(1) c = 7.068(1) - $\beta = 114.054(5)$ - 486.9(1) 4 7.79
Data sellestisu		
Data collection Wavelength (Å) 2θ range (deg) 2θ step (deg) Data collected - - Collected reflections Nb Measured reflections Nb Independent reflections Nb (I > $3\sigma(I)$) Redundancy μ_1/mm (Mo, K α) $R(F^2)_{int}$ Diffractometer Monochromator	1.5418 (Cu Kα) 5.00-110.00 0.02 - - - - - - - - - - - - -	0.71073 (Mo $K\alpha$) 6.32-78.64 - $-23 \le h \le 23$ $-9 \le k \le 7$ $-12 \le 1 \le 11$ 6538 1495 1156 4.157 79.74 0.0738 Bruker X8 Graphite
Detector	Energy dispersive (Sol-X)	CCD 4K
Refinement R(F) obs/all wR(F) obs/all Second extinction Background R _p wR _p wR _{obs} GOF Nb of used parameters Weighting scheme Profile Computer programs	- - - 10 Legendre polynomial terms combined with manual background 0.0603 0.0790 0.0433 2.40 38 $1/\sigma^2$ Pseudo-Voigt Jana 2006—β version	$\begin{array}{c} 0.0876/0.1039\\ 0.1063/0.1077\\ 0.024(3)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
		version

polyhedron is built from a pseudo-rectangular basis O1O4O3O4, and the five remaining oxygen atoms belong to different AsO₄ tetrahedra: i.e. three O3 on one side, two of them being one AsO₄ edge, and O1, O2 from an other AsO₄ on the other side. As described previously for PbBiOVO₄ polymorphs (part I of this paper) lone pair coordinates and distances (Å) from nuclei were determined: 0.325, 0.000, 0.865 and 0.272 for lead, and 0.029, 0.000, 0.322 and 0.343 for bismuth, respectively. Again, the Bi lone pair L is oriented opposite to the square basis, towards the missing corner of a pseudo-cubic environment.

3.3. Solid solutions

3.3.1. Identification of crystalline forms

Introduction of various doping elements into PbBiOVO₄ was carried out via cationic substitution for vanadium. As indicated in

XRD analysis, a triclinic solid solution was obtained for PbBiOV_{1-x} P_xO_4 samples, whatever the P for V substitution rate.

Introduction of As was performed via cationic substitution for M^{5+} element in PbBiOVO₄ or PbBiOPO₄. Both structural types (triclinic and then monoclinic) were successively observed.

As noted during the high-temperature X-ray diffraction study (Fig. 3), the modification of the γ angle of the triclinic phase, resulting from the As for V substitution, is characteristic of the triclinic \leftrightarrow monoclinic crystal structure evolution. The closer is the γ angle value to 90°, the closer it gets to the triclinic \rightarrow monoclinic transition (Fig. 2—top); when γ reaches 90°, the phase transition occurs. Along with the P for V substitution, γ increases far from this value; both PbBiOPO₄ and PbBiOVO₄ are triclinic at room temperature and in PbBiOPO₄, the transition temperature, observed at 750 °C, is higher than for PbBiOVO₄. Substituting As for V (Fig. 2—bottom) leads to an opposite evolution of γ .

While doping PbBiOVO₄ with chromium and manganese, the resulting solid solutions PbBiOV_{1-x}Cr_xO_{4±y} and PbBiOV_{1-x} Mn_xO_{4±y} were observed, respectively, until x = 0.15 and 0.06; above these limits, some extra peaks characterizing Cr₂O₅ and Pb₂MnO₄, were always detected in the corresponding powder X-rays patterns.

Fig. 3 shows the composition dependence of PbBiOV_{1-x}X_xO₄ unit formula volume for the different investigated triclinic domains. The significant decrease of this volume for As or P doping agent is in good agreement with the X^{5+} ionic radii of these elements, smaller than V⁵⁺ radius. Mn or Cr which exhibits an ionic radius higher than V⁵⁺, induced a very limited expansion of the unit cell volume, linked to their narrow compositional domain.

3.3.2. Conduction properties

Conductivity measurements were performed on PbBiOVO₄ and substituted materials, during two heating–cooling cycles between 280 and 800 °C. The measurements carried out during the first heating run are generally erroneous because of the evolution of the sample–electrodes–cell interfaces, and cannot be trusted. The results corresponding to the first cooling run, which are reproducible during the subsequent thermal cycles, are presented on conductivity Arrhenius plots (Fig. 4).

Quite logically, a single pseudo-linear Arrhenius domain characterizes the PbBiOAsO₄ compound, which is monoclinic in the temperature range of significant measurements (below 500 °C, the conductivity values are too low and cannot be measured). An analogous pseudo-linear domain is also observed, over the whole investigated temperature range for PbBiOPO₄, and below 700 °C for PbBiOVO₄, although the $\beta \rightarrow \alpha$ phase transition occurs for both compounds; the small accident which can be observed around 440 °C for PbBiOVO₄, cannot be correlated to the phase transition identified near 450 °C by several other techniques, since similar anomalies in log σ evolution are observed for PbBiOPO₄ (550 °C) or PbBiOAsO₄ (460 °C), where no phase transition occurs. The oxyvanadate compound is a better conductor than its phosphate or arsenate homologous, although the latter is under the "stabilized" high-temperature form, in the whole investigated temperature range.

Substitution of vanadium, generally decreases the conductivity, except the Cr for V doping which leads to an enhancement of σ in the domain of the monoclinic β -form and shows two pseudolinear domains, with a slope change likely corresponding to the $\beta \rightarrow \alpha$ phase transition. This specific positive effect of Cr-doping on the β -form σ could be attributed to the appearance of an electronic conductivity contribution due to chromium. These influences of the substituting elements are similar to that reported for cationic substitutions in Pb₂BiVO₆ [5]. While the

Fig. 2. Composition dependence of transition temperature (high part) and angles for triclinic PbBiOV_{1-x}As_xO₄ samples.

Fig. 3. Triclinic PbBiOV_{1-x} X_xO_4 formula volume versus composition for different doping elements (X = P, As, Cr, Mn).

highest conductivity performances are observed in the hightemperature domain for Cr-doped (x = 0.06) β -PbBiOVO₄, the unsubstituted α -PbBiOVO₄ variety remains the best conductor among the investigated compounds in the 20–450 °C temperature range.

Table 2 reports the significant values (activation energy: E_a and conductivity: σ) at 700 °C, which correspond in all cases to the monoclinic structure, and at 300 °C (conductivity: σ) which, depending on the composition, corresponds to one or the other structure.

In contrast to the other compositions, the vanadium compound exhibits a sudden increase of conductivity at 710 °C while no

evident phase transition was observed by X-ray thermodiffractometry. A significant curvature of the Arrhenius plot above 600 °C was also observed by Sinclair et al. [6] for this composition and could not be associated with any phase transition. However, a tentative interpretation of this phenomenon can be proposed on the basis of what occurs in Bi₂₆Mo₁₀O₆₉ oxide ion conductors [7]. An increase of the conductivity could be explained by possible motion of oxygen vacancy at temperature higher than 750 °C. Indeed if we consider the cationic lattice of PbBiOVO₄, its crystal structure can also be viewed as a superstructure of the fluoritetype to which the highly conductive form δ -Bi₂O₃ belongs. Writing the studied compound formula as Pb₄Bi₄V₄O₂₀, clearly shows that a super cell originating from stacking three fluorite-type unit cells (i.e. Ca₁₂F₂₄) would introduce four anionic vacancies, or show one oxide vacant site per formula unit, i.e. PbBiOVO₄ I₁.

A rapid analysis of available free space in the β -polymorph revealed a cavity at 0.196 1/2 0.584, located in between two VO₄ along [010], at 2.17 and 2.19 Å from O(3) and O(2), respectively, and at 2.36 Å from Bi(1). At 550 °C, the centre of this cavity is too close to O(2) and O(3) sites to allow oxygen diffusion, but one can expect an expansion of the cavity size due to thermal motion when the temperature increases. This would allow the possibility of oxygen motion with a diffusion pathway along [010].

4. Conclusion

This reinvestigation of PbBiOXO₄ (X = V, P, As) phases revealed a phase transition for V- and P-compounds, but no transition for the As-compound. The two PbBiOPO₄ varieties are isomorph to the vanadate forms, while PbBiOAsO₄ adopts the β -type structure

Fig. 4. Conductivity Arrhenius plots of PbBiOXO₄ (X = V, P, As) compounds (upper part) and of PbBiOVO₄-related solid solutions (lower part).

Table 2 Activation energy and conductivity values at 700 and 300 $^\circ\text{C}$

Material	Ea (eV)	$\sigma_{700^\circ C} (\Omega\mathrm{cm})^{-1}$	$\sigma_{300^\circ C} (\Omega\mathrm{cm})^{-1}$
$\begin{array}{c} PbBiOVO_{4} \\ PbBiOPO_{4} \\ PbBiOAsO_{4} \\ PbBiOV_{0.94}Cr_{0.06}O_{4\pm y} \\ PbBiOV_{0.85}Cr_{0.15}O_{4\pm y} \\ PbBiOV_{0.94}Mn_{0.06}O_{4\pm y} \\ PbBiOV_{0.85}P_{0.15}O_{4} \end{array}$	0.75 1.67 1.06 0.79 1.01 0.76 1.07	$\begin{array}{c} 9.3\times10^{-4}\\ 1.68\times10^{-6}\\ 4.69\times10^{-5}\\ 1.05\times10^{-3}\\ 1.8\times10^{-4}\\ 1.77\times10^{-4}\\ 2.83\times10^{-5} \end{array}$	$\begin{array}{c} 2.64 \times 10^{-6} \\ 5.34 \times 10^{-10} \\ 1.98 \times 10^{-8} \\ 3.11 \times 10^{-8} \\ 2.15 \times 10^{-8} \\ 3.88 \times 10^{-9} \\ 5.12 \times 10^{-9} \end{array}$

whatever the temperature. PbBiOP_{1-x}As_xO₄ and PbBiOV_{1-x}X_xO₄ (X = As, P, Cr, Mn) solid solutions display both triclinic and monoclinic domains, and the $\alpha \rightarrow \beta$ transition temperature is a

function of the substitution rate. The ionic conductivity of these compounds was investigated by impedance spectroscopy: β -PbBiOVO₄ displays an interesting conductivity jump at 710 °C, without any noticeable structural change. An analysis of the available free space in the structure of the β -PbBiOVO₄ allows to propose a one-dimensional oxygen diffusion pathway along [010] when the temperature increases. Neutron diffraction above 710 °C will be performed to verify this assumption.

Supplementary materials

Crystal Structure Data for the various phases gathered in Tables 1 and 2, have been sent to the Fachinformationzentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany; (fax: (+49)7247-808-666; e-mail: crystaldata@fiz-karlsruhe.de; http://www.fiz-karlsruhe.de, as supplementary material CSD nos. 419124 for PbBiOAsO4-RT-XC (room temperature structure of PbBiOAsO₄ determined on single crystal using X-ray diffraction), 419125 for PbBiOPO4-RT-XP (room temperature structure of PbBiOPO₄ determined on powder using X-ray diffraction). Copies of this information can be obtained by contacting the FIZ (quoting the article details and the corresponding CSD number).

Acknowledgments

The "Fonds Européen de Développement Régional (FEDER)", "CNRS", "Région Nord Pas-de-Calais" and "Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche" are acknowledged for fundings of X-ray diffractometers. The authors are also grateful to L. Burylo and N. Djelal for their help for the X-ray diffraction and thermal behaviour analyses. Dr. V. Petricek is also thanked for providing us the β -version of JANA2006.

References

- [1] L.H. Brixner, C.M. Foris, Mater. Res. Bull. 9 (1974) 273-276.
- [2] S. Giraud, P. Conflant, M. Drache, J.P. Wignacourt, H. Steinfink, Phosphorus Res. Bull. 10 (1999) 138–143.
 [3] S. Giraud, M. Mizrahi, M. Drache, P. Conflant, J.P. Wignacourt, H. Steinfink, Solid
- State Sci. 3 (2001) 593–602.
 [4] V. Petricek, M. Dusek, L. Palatinus, JANA2006-β Version, Institute of Physics,
- Praha, Czech Republic, 2007.
 [5] O. Labidi, P. Roussel, M. Huve, M. Drache, P. Conflant, J.P. Wignacourt, J. Solid State Chem. 178 (2005) 2247–2255.
- [6] D.C. Sinclair, E. Marinou, J.M.S. Skakle, J. Mater. Chem. 9 (1999) 2617-2621.
- [7] R.N. Vannier, F. Abraham, G. Nowogrocki, G. Mairesse, J. Solid State Chem. 142 (1999) 294–304.